JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

ZnO(101̅0) Surface Hydroxylation under Ambient Water Vapor.

The interaction of water vapor with a single crystal ZnO(101̅0) surface was investigated using synchrotron-based ambient pressure X-ray photoelectron spectroscopy (APXPS). Two isobaric experiments were performed at 0.3 and 0.07 Torr water vapor pressure at sample temperatures ranging from 750 to 295 K up to a maximum of 2% relative humidity (RH). Below 10-4  % RH the ZnO(101̅0) interface is covered with ∼0.25 monolayers of OH groups attributed to dissociation at nonstoichiometric defect sites. At ∼10-4  % RH there is a sharp onset in increased surface hydroxylation attributed to reaction at stoichiometric terrace sites. The surface saturates with an OH monolayer ∼0.26 nm thick and occurs in the absence of any observable molecularly bound water, suggesting the formation of a 1 × 1 dissociated monolayer structure. This is in stark contrast to ultrahigh vacuum experiments and molecular simulations that show the optimum structure is a 2 × 1 partially dissociated H2 O/OH monolayer. The sharp onset to terrace site hydroxylation at ∼10-4  % RH for ZnO(101̅0) contrasts with APXPS observations for MgO(100) which show a sharp onset at 10-2  % RH. A surface thermodynamic analysis reveals that this shift to lower RH for ZnO(101̅0) compared to MgO(100) is due to a more favorable Gibbs free energy for terrace site hydroxylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app