Add like
Add dislike
Add to saved papers

Optically derived metabolic and hemodynamic parameters predict hippocampal neurogenesis in the BTBR mouse model of autism.

In this study, we made use of dual-wavelength laser speckle imaging (DW-LSI) to assess cerebral blood flow (CBF) in the BTBR-genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW-LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO2 ), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed which confirmed the lowered CBF in the autistic-like group. Furthermore, we found in vivo cortical CBF measurements to predict the rate of hippocampal neurogenesis, measured ex vivo by the number of neurons expressing doublecortin or the cellular proliferation marker Ki-67 in the dentate gyrus, with a strong positive correlation between CBF and neurogenesis markers (Pearson, r = 0.78; 0.9, respectively). These novel findings identifying cortical CBF as a predictive parameter of hippocampal neurogenesis highlight the power and flexibility of the DW-LSI and LDF setups for studying neurogenesis trends under normal and pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app