Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular Structuring and Phase Transition of Lipid-Based Formulations upon Water Dispersion: A Coarse-Grained Molecular Dynamics Simulation Approach.

Molecular Pharmaceutics 2017 December 5
The internal molecular structure of lipid-based formulations (LBFs) is poorly understood. In this work we aimed at establishing coarse-grained molecular dynamics simulations as a tool for rapid screening and investigation of the internal environment of these formulations. In order to study complex LBFs composed of different kinds of lipids we simulated a number of systems containing either medium-chain or long-chain lipids with varying proportions of tri-, di-, and monoglycerides. Structural and dynamic measurements and analyses identified that the internal environment in a mixture of lipids was locally ordered even in the absence of water, which might explain some of the previously reported effects on drug solubility in these systems. Further, phase changes occurring upon water dispersion are well captured with coarse-grained simulations. Based on these simulations we conclude that the coarse-grained methodology is a promising in silico approach for rapid screening of structures formed in complex formulations. More importantly it facilitates molecular understanding of interactions between excipients and water at a feasible time scale and, hence, opens up for future virtual drug formulation studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app