Add like
Add dislike
Add to saved papers

Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit.

Research on ultrathin nanomaterials is one of the fastest developing areas in contemporary nanoscience. The field of ultrathin one- (1D) and two-dimensional (2D) colloidal nanocrystals (NCs) is still in its infancy, but offers the prospect of production of ultrathin nanomaterials in liquid-phase at relatively low costs, with versatility in terms of composition, size, shape, and surface control. In this Perspective, the state of the art in the field is concisely outlined and critically discussed to highlight the essential concepts and challenges. We start by presenting a brief overview of the ultrathin colloidal 1D and 2D semiconductor NCs prepared to date, after which the synthesis strategies and formation mechanisms of both 1D and 2D NCs are discussed. The properties of these low-dimensional materials are then reviewed, with emphasis on the optical properties of luminescent NCs. Finally, the future prospects for the field are addressed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app