JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Structure-based Approaches Targeting Parasite Cysteine Proteases.

Cysteine proteases are essential hydrolytic enzymes present in the majority of organisms, including viruses and unicellular parasites. Despite the high sequence identity displayed among these proteins, specific structural features across different species grant distinct functions to these biomolecules, frequently related to pathological conditions. Consequently, their relevance as promising targets for potential specific inhibitors has been highlighted and occasionally validated in recent decades. In this review, we discuss the recent outcomes of structure-based campaigns aiming the discovery of new inhibitor prototypes against cruzain and falcipain, as alternative therapeutic tools for Chagas disease and malaria treatments, respectively. Computational and synthetic approaches have been combined on hit optimization strategies and are also discussed herein. These rationales are extended to additional tropical infectious and neglected pathologies, such as schistosomiasis, leishmaniasis and babesiosis, and also to Alzheimer's Disease, a widespread neurodegenerative disease poorly managed by currently available drugs and recently linked to particular physiopathological roles of human cysteine proteases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app