Add like
Add dislike
Add to saved papers

Flexible SiC/Si 3 N 4 Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption.

SiC/Si3 N4 composite nanofibers with in situ embedded graphite, which show highly efficient electromagnetic (EM) wave absorption performance in gigahertz frequency, were prepared by electrospinning with subsequent polymer pyrolysis and annealing. By means of incorporating graphite and Si3 N4 into SiC, the EM wave absorption properties of the nanofibers were improved. The relationship among processing, fiber microstructure, and their superior EM wave absorption performance was systematically investigated. The EM wave absorption capability and effective absorption bandwidth (EAB) of nanofibers can be simply controlled by adjusting annealing atmosphere and temperature. The nanofibers after annealing at 1300 °C in Ar present a minimum reflection loss (RL) of -57.8 dB at 14.6 with 5.5 GHz EAB. The nanofibers annealed in N2 at 1300 °C exhibit a minimum RL value of -32.3 dB at a thickness of 2.5 mm, and the EAB reaches 6.4 GHz over the range of 11.3-17.7 GHz. The highly efficient EM wave absorption performance of nanofibers are closely related to dielectric loss, which originated from interfacial polarization and dipole polarization. The excellent absorbing performance together with wider EAB endows the composite nanofibers potential to be used as reinforcements in polymers and ceramics (SiC, Si3 N4 , SiO2 , Al2 O3 , etc.) to improve their EM wave absorption performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app