Add like
Add dislike
Add to saved papers

Synergy between 5-HT 4 receptor stimulation and phosphodiesterase 4 inhibition in facilitating acetylcholine release in human large intestinal circular muscle.

BACKGROUND: Gastroprokinetic properties of 5-HT4 receptor agonists, such as prucalopride, are attributed to activation of 5-HT4 receptors on cholinergic nerves innervating smooth muscle in the gastrointestinal smooth muscle layer, increasing acetylcholine release and muscle contraction. In porcine stomach and colon, phosphodiesterase (PDE) 4 has been shown to control the signaling pathway of these 5-HT4 receptors. The aim of this study was to investigate the PDE-mediated control of these 5-HT4 receptors in human large intestine.

METHODS: Circular smooth muscle strips were prepared from human large intestine; after incubation with [³H]-choline, electrically induced tritium outflow was determined as a measure for acetylcholine release. The influence of PDE inhibition on the facilitating effect of prucalopride on electrically induced acetylcholine release was studied.

KEY RESULTS: The non-selective PDE inhibitor IBMX enhanced the facilitating effect of prucalopride on electrically induced acetylcholine release. The selective inhibitors vinpocetine (PDE1), EHNA (PDE2) and cilostamide (PDE3) did not influence, while rolipram and roflumilast (PDE4) enhanced the prucalopride-induced facilitation to the same extent as IBMX.

CONCLUSIONS & INFERENCES: In human large intestinal circular muscle, the intracellular pathway of 5-HT4 receptors facilitating cholinergic neurotransmission to large intestinal circular smooth muscle is controlled by PDE4. If the synergy between 5-HT4 receptor agonism and PDE4 inhibition is confirmed in a functional assay with electrically induced cholinergic contractions of human large intestinal circular smooth muscle strips, combination of a selective 5-HT4 receptor agonist with a selective PDE4 inhibitor might enhance the in vivo prokinetic effect of the 5-HT4 receptor agonist in the large intestine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app