Add like
Add dislike
Add to saved papers

Hemodynamic assessments of the ascending thoracic aortic aneurysm using fluid-structure interaction approach.

Current assessment and management of ascending thoracic aortic aneurysm (ATAA) rely heavily on the diameter of the ATAA and blood pressure rather than biomechanical and hemodynamic parameters such as arterial wall deformation or wall shear stress. The objective of the current study was to develop an accurate computational method for modeling the mechanical responses of the ATAA to provide additional information in patient evaluations. Fully coupled fluid structure interaction simulations were conducted using data from cases with ATAA with measured geometrical parameters in order to evaluate and analyze the change in biomechanical responses under normotensive and hypertensive conditions. Anisotropic hyperelastic material property estimates were applied to the ATAA data which represented three different geometrical configurations of ATAAs. The resulting analysis showed significant variations in maximum wall shear stress despite minimal differences in flow velocity between two blood pressure conditions. Additionally, the three different ATAA conditions identified different aortic expansions that were not uniform under pulsatile pressure. The elevated wall stress with hypertension was also geometry-dependent. The developed models suggest that ATTA cases have unique characteristic in biomechanical and hemodynamic evaluations that can be useful in risk management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app