Add like
Add dislike
Add to saved papers

Superhydrophobic, highly adhesive arrays of copper hollow spheres produced by electro-colloidal lithography.

Soft Matter 2017 August 24
We report the patterning of copper surfaces which display both superhydrophobicity and high adhesion thanks to a new feature geometry, and without resorting to chemical modification. Polystyrene beads organized in 2D crystals under an AC electric field act as a template for the growth of copper deposited via cupric ion-loaded multi-lamellar vesicles. After the removal of the beads, hexagonal arrays of supported hollow spheres or copper bowls are generated, depending on the amount of deposited copper. While the bowl-covered surfaces display a predictable decreasing wettability (Cassie model) as their wall height increases, the hollow sphere-covered surfaces exhibit both high adhesion and superhydrophobicity (Cassie-Baxter state).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app