Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tail vein injection of mmLDL upregulates mouse mesenteric artery ET B receptors via activation of the ERK1/2 pathway.

Vascular Pharmacology 2017 September
Minimally modified low density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. This study investigated the effect of mmLDL on mouse mesenteric artery endothelin type B (ETB ) receptors and its molecular mechanism. Mice were injected with normal saline (NS group), mmLDL in the tail vein (mmLDL group), or with both mmLDL and an intraperitoneal injection of the ERK1/2 pathway-specific inhibitor U0126 (mmLDL+U0126 group). The dose-response curve of mesenteric artery contraction induced by sarafotoxin 6c (S6c), the ETB receptor agonist, was measured using a sensitive myograph system. ELISAs, RT-PCR and Western blot were used to determine the serum concentrations of mouse oxidized low density lipoprotein (oxLDL), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) as well as the expression of ETB receptors, ICAM-1, VCAM-1 and phosphorylated-extracellular signal-regulated kinase 1/2 (p-ERK1/2). The S6c-induced contraction dose-response curve was significantly enhanced by mmLDL treatment and showed a significantly higher Emax value than in the NS group (P<0.001), and the ETB receptor mRNA and protein expression in the vascular wall was significantly higher than in the NS group. The serum concentration and expression of ICAM-1 and VCAM-1 were also increased by mmLDL treatment, but intraperitoneal injection of U0126 inhibited these changes as well as the increase in p-ERK1/2 protein in the vessel wall caused by mmLDL. ICAM-1 and VCAM-1 serum concentrations were positively correlated with the S6c-induced maximum contraction of blood vessels. Increased in vivo levels of mmLDL increased the serum concentrations and expression of ICAM-1 and VCAM-1 by activating the ERK1/2 pathway, resulting in the expression of ETB receptors and the enhancement of contractile function in vascular smooth muscle. Understanding the effect of mmLDL on ETB receptors and its mechanism can provide ideas for cardiovascular disease prevention and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app