Add like
Add dislike
Add to saved papers

Modulating effect of inositol hexaphosphate on arachidonic acid-dependent pathways in colon cancer cells.

Cyclooxygenase (COX) and lipoxygenase (LOX) are key enzymes of arachidonic acid metabolism. Their products, prostaglandins and leukotrienes, are involved in the pathogenesis of inflammatory bowel diseases and colorectal cancer. The aim of the study was to examine the influence of inositol hexaphosphate (IP6), a naturally occurring phytochemical, on the expression of genes encoding COX and LOX isoforms and synthesis of their products (PGE2 and LTB4 ) in colon cancer cell line Caco-2 stimulated with pro-inflammatory agents (IL-1β/TNFα). Real-time RT-qPCR was used to validate mRNAs level of examined genes. The concentrations of COX-2 and 5-LOX proteins as well as PGE2 and LTB4 were determined by the ELISA method. Based on these studies it may be concluded that IP6 may limit inflammatory events in the colonic epithelium and prevent colon carcinomas by modulating the expression of genes encoding COX and LOX isoforms at both mRNA and protein levels as well as by affecting the synthesis and secretion of prostaglandins and leukotrienes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app