Add like
Add dislike
Add to saved papers

The Effect of Lumbar Disc Herniation on Musculoskeletal Loadings in the Spinal Region During Level Walking and Stair Climbing.

BACKGROUND People with low back pain (LBP) alter their motion patterns during level walking and stair climbing due to pain or fear. However, the alternations of load sharing during the two activities are largely unknown. The objective of this study was to investigate the effect of LBP caused by lumbar disc herniation (LDH) on the muscle activities of 17 main trunk muscle groups and the intradiscal forces acting on the five lumbar discs. MATERIAL AND METHODS Twenty-six healthy adults and seven LDH patients were recruited to perform level walking and stair climbing in the Gait Analysis Laboratory. Eight optical markers were placed on the bony landmarks of the spinous process and pelvis, and the coordinates of these markers were captured during the two activities using motion capture system. The coordinates of the captured markers were applied to developed musculoskeletal model to calculate the kinetic variables. RESULTS LDH patients demonstrated higher muscle activities in most trunk muscle groups during both level walking and stair climbing. There were decreases in anteroposterior shear forces on the discs in the pathological region and increases in the compressive forces on all the lumbar discs during level walking. The symmetry of mediolateral shear forces was worse in LDH patients than healthy adults during stair climbing. CONCLUSIONS LDH patients exhibited different kinetic alternations during level walking and stair climbing. However, both adaptive strategies added extra burdens to the trunk system and further increased the risk for development of LDH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app