Add like
Add dislike
Add to saved papers

Unveiling the Ionization Energy of the CN Radical.

The cyano radical is a ubiquitous molecule and was, for instance, one of the first species detected in astrophysical media such as comets or diffuse clouds. In photodissociation regions, the reaction rate of CN+ + CO → CN + CO+ is one of the critical parameters defining nitrile chemistry. The enthalpy of this charge transfer reaction is defined as the difference of ionization energies (EI ) between CN and CO. Although EI (CO) is known accurately, the EI (CN) values are more dispersed and deduced indirectly from thermodynamic thresholds only, all above EI (CO), leading to the assumption that the reaction is fast even at low temperature. Using a combination of synchrotron radiation, electron/ion imaging coincidence techniques, and supporting ab initio calculations, we directly determine the first adiabatic ionization energy of CN at 13.956(7) eV, and we demonstrate that EI (CN) < EI (CO). The findings suggest a very slow reaction in the cold regions of interstellar media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app