Add like
Add dislike
Add to saved papers

The Inductive Effect of Neighboring Cations in Tuning Luminescence Properties of the Solid Solution Phosphors.

Inorganic Chemistry 2017 August 22
Forming solid solutions through cation substitution is an efficient way to improve the luminescence properties of Ce3+ or Eu2+ activated phosphors and even to develop new ones, which is badly needed for phosphor-converted white LEDs. Here, we report new color tunable solid solution phosphors based on Eu2+ activated K2 Al2 B2 O7 as a typical case to demonstrate that, besides crystal field splitting of 5d levels, centroid shift and Stokes shift can be dominant in tuning excitation and emission spectra as well as thermal stability of solid solution phosphors, both of which were previously considered to be negligible. Moreover, a general model involving the inductive effect of neighboring cations is proposed to explain the obvious variations in centroid shift and Stokes shift with cation substitution. Our work is propitious for the construction of more reasonable structure-property relations and thus offers theoretical guidance for designing solid solution phosphors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app