Add like
Add dislike
Add to saved papers

Facile Synthesis of Multiblock Copolymers Containing Sequence-Controlled Peptides and Well-Defined Vinyl Polymers by Nitroxide-Mediated Polymerization.

Precisely incorporating a wide range of structural and functional multiblocks along a polymer backbone is a significant challenge in polymer chemistry and offers promising opportunities to design highly ordered materials, including controlled polymer folding. Herein, a facile and versatile strategy for preparing functional multiblock copolymers composed of sequential peptides and well-defined vinyl polymers with a narrow polydispersity is reported. Cyclic oligopeptides have been developed that contain an alkoxyamine bond in the framework. By using this type of cyclic initiator, peptide-containing multiblock copolymers are successfully synthesized by nitroxide-mediated polymerization of styrene. To demonstrate the versatility of this method, radical (co)polymerizations were carried out for different monomers (p-chlorostyrene, 4-vinylpyridine, and styrene/acrylonitrile) and by three different cyclic peptide initiators with specific amino acid sequences. The resultant multiblock copolymer is foldable through intramolecular interactions between peptide blocks. It is believed that this approach will significantly advance the field of controlled polymer synthesis for complex structures and single-chain folding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app