Add like
Add dislike
Add to saved papers

Quantitative assessment of energy transfer in upconverting nanoparticles grafted with organic dyes.

Nanoscale 2017 August 25
Upconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications. In this article, we assembled UCNP-organic dye RET systems and investigated their luminescence decays and spectra, with varying UCNP sizes and quantities of dyes grafted onto their surface. We observed an increase in RET efficiency with lower particle sizes and higher dye decoration. We also observed several unexpected effects, notably a quenching of UCNP luminescence bands that are not resonant with the absorption of organic dyes. We proposed a semi-empirical Monte Carlo model for predicting the behavior of UCNP-organic dye systems, and validated it by comparison with our experimental data. These findings will be useful for the development of more accurate UCNP-based assays, sensors, and imaging agents, as well as for optimization of UCNP-organic dye RET systems employed in cancer treatment and theranostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app