COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of image intensity, local, and multi-atlas priors in brain tissue classification.

Medical Physics 2017 November
PURPOSE: Automated and accurate tissue classification in three-dimensional brain magnetic resonance images is essential in volumetric morphometry or as a preprocessing step for diagnosing brain diseases. However, noise, intensity in homogeneity, and partial volume effects limit the classification accuracy of existing methods. This paper provides a comparative study on the contributions of three commonly used image information priors for tissue classification in normal brains: image intensity, local, and multi-atlas priors.

METHODS: We compared the effectiveness of the three priors by comparing the four methods modeling them: K-Means (KM), KM combined with a Markov Random Field (KM-MRF), multi-atlas segmentation (MAS), and the combination of KM, MRF, and MAS (KM-MRF-MAS). The key parameters and factors in each of the four methods are analyzed, and the performance of all the models is compared quantitatively and qualitatively on both simulated and real data.

RESULTS: The KM-MRF-MAS model that combines the three image information priors performs best.

CONCLUSIONS: The image intensity prior is insufficient to generate reasonable results for a few images. Introducing local and multi-atlas priors results in improved brain tissue classification. This study provides a general guide on what image information priors can be used for effective brain tissue classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app