Add like
Add dislike
Add to saved papers

Parasite metacommunities: Evaluating the roles of host community composition and environmental gradients in structuring symbiont communities within amphibians.

Ecologists increasingly report the structures of metacommunities for free-living species, yet far less is known about the composition of symbiont communities through space and time. Understanding the drivers of symbiont community patterns has implications ranging from emerging infectious disease to managing host microbiomes. Using symbiont communities from amphibian hosts sampled from wetlands of California, USA, we quantified the effects of spatial structure, habitat filtering and host community components on symbiont occupancy and overall metacommunity structure. We built upon a statistical method to describe metacommunity structure that accounts for imperfect detection in survey data-detection error-corrected elements of metacommunity structure-by adding an analysis to identify covariates of community turnover. We applied our model to a metacommunity of eight parasite taxa observed in 3,571 Pacific chorus frogs (Pseudacris regilla) surveyed from 174 wetlands over 5 years. Symbiont metacommunity structure varied across years, showing nested structure in 3 years and random structure in 2 years. Species turnover was most consistently influenced by spatial and host community components. Occupancy generally increased in more southeastern wetlands, and snail (intermediate host) community composition had strong effects on most symbiont taxa. We have used sophisticated but accessible statistical methods to reveal that spatial components-which influence colonization-and host community composition-which mediates transmission-both drive symbiont community composition in this system. These methods allow us to associate broad patterns of community turnover to local, species-level effects, ultimately improving our understanding of spatial community dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app