Add like
Add dislike
Add to saved papers

Isolation, identification and characterization of arsenic transforming exogenous endophytic Citrobacter sp. RPT from roots of Pteris vittata.

3 Biotech 2017 August
The aim of the present study was to assess the arsenic (As) transformation potential of endophytic bacteria isolated from roots of Pteris vittata plant. The endophytic bacterium was tested for minimal inhibitory concentration (MIC) against As. The endophytic strain RPT exhibited the highest resistance to As(V) (400 mg/l). Phylogenetic analysis of the 16S rRNA sequence suggested that strain RPT was a member of genus Citrobacter. The As transformation assay revealed As(III) oxidation and As(V) reduction potential of Citrobacter sp. RPT. The As resistance mechanism was further confirmed by amplification of arsC and aoxB genes. The growth kinetics of strain RPT was altered slightly in the presence of different concentration (100-400 mg/l) of As stress. Temperature and pH influenced the As removal rate. The maximum As removal was observed at pH 7.0 (74%) and 37 °C (70.9%). The results suggest that strain RPT can survive under the As stress and has been identified as a potential candidate for application in bioremediation of As in contaminated environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app