Add like
Add dislike
Add to saved papers

Temperature and Size Effects on Structural and Dynamical Properties of Water Confined in 1 - 10 nm-scale Pores Using Proton NMR Spectroscopy.

We were able to fill 1 - 10 nm-scale silica pores with water by vapor condensation, and examined the freezing phenomena, structures, and molecular motions of the confined water in the temperature range from 293 to 188 K by1 H-NMR spectroscopy. The results showed that almost all water molecules confined in 10 nm-scale pores were frozen and that approximately half of the water confined in 1 nm-scale pores existed in the liquid state even below the freezing point. The water adsorbed on the pore surfaces was estimated as a monolayer in 2.58 nm pores and bi- and tri-layers in 6.48 nm and larger pores, respectively. Furthermore, it was clarified from the proton relaxation rate (1 H-1/T1 ) measurements that the molecular motions of adsorbed water itself were restricted by nanoconfinement and were extremely dependent on the conditions of proton exchange and hydrogen bond rearrangements of the adsorbed water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app