Add like
Add dislike
Add to saved papers

Bijective Diameters of Gene Tree Parsimony Costs.

Synthesizing median trees from a collection of gene trees under the biologically motivated gene tree parsimony (GTP) costs has provided credible species tree estimates. GTP costs are defined for each of the classic evolutionary processes. These costs count the minimum number of events necessary to reconcile the gene tree with the species tree where the leaf-genes are mapped to the leaf-species through a function called labeling. To better understand the synthesis of median trees under these costs, there is an increased interest in analyzing their diameters. The diameters of a GTP cost between a gene tree and a species tree are the maximum values of this cost of one or both topologies of the trees involved. We are concerned about the diameters of the GTP costs under bijective labelings. While these diameters are linear time computable for the gene duplication and deep coalescence costs, this has been unknown for the classic gene duplication and loss, and for the loss cost. For the first time, we show how to compute these diameters and proof that this can be achieved in linear time, and thus, completing the computational time analysis for all of the bijective diameters under the GTP costs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app