Add like
Add dislike
Add to saved papers

Combined XAFS Spectroscopy and Ab Initio Study on the Characterization of Iron Incorporation by Montmorillonite.

Iron occurs in clay minerals in both ferric and ferrous forms. Depending on its oxidation state and the environmental conditions, it can participate in redox reactions and influence the sorption processes at surfaces of clay minerals. Knowing the oxidation state and the preferential structural position of Fe(2+) and Fe(3+) is essential for the detailed understanding of the mechanism and kinetics of such processes. In this study, molecular dynamics (MD) calculations based on density functional theory (DFT+U) were applied to simulate the incorporated Fe in bulk montmorillonite and to explain the measured Fe K-edge X-ray absorption fine structure (XAFS) spectra. The analysis of the experimental data and simulation results suggested that iron in montmorillonite is preferentially incorporated as Fe(3+) into the octahedral layer. The simulations showed that there is no preferential occupation of cis- or trans-sites by Fe(2+) and Fe(3+) in bulk montmorillonite. A very good agreement between the ab initio simulated and the measured XAFS spectra demonstrate the robustness of the employed simulation approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app