Add like
Add dislike
Add to saved papers

A simple and economical strategy for obtaining calibration plots for relative quantification of positional isomers of YYX/YXY triglycerides using high-performance liquid chromatography/tandem mass spectrometry.

RATIONALE: Positional analysis of intact triglycerides could provide greater insights into the link between fatty acid position and lipotoxic diseases. However, this methodology has been impeded by lack of commercial availability of positionally pure triglycerides. This work reports on a strategy for defining calibration plots for YXY/YYX triglyceride systems based on the product ion intensities in the collision-induced dissociation spectra of ammoniated precursor ions.

METHODS: A set of triglycerides were synthesized and analyzed by electrospray ionization tandem mass spectrometry using an ion trap mass spectrometer. The product ion spectra of the ammoniated precursor ions were collected for 42 triglyceride systems of the form YXY/YYX, where Y represents C16:0 , C18:1(c-9) and C20:4(cccc-5,8,11,14) . Three-point calibration plots were prepared by plotting the relative abundance of the YY+ product ion vs. the relative abundance of the YYX positional isomer.

RESULTS: The calibration plots were shown to give relative abundances of positional isomers accurate to within ±0.02 for most systems. Using an ion trap, under a controlled set of collision parameters, the slopes of the calibration plots can be used to compare the sensitivities of the product ion intensities to fatty acid position for various triglyceride systems. The average slopes of the calibration plots for the C16:0 , C18:1(c-9) and C20:4(cccc-5,8,11,14) systems were 0.29 ± 0.05, 0.21 ± 0.05 and 0.045 ± 0.005, respectively.

CONCLUSIONS: While the presence of multiple unsaturated fatty acids tends to slightly decrease the slopes of the calibration plots, the data suggest that the sensitivities are sufficient for performing positional analysis of most triglyceride systems. However, the presence of unsaturated fatty acids that contain double bonds close to the carbonyl group, such as arachidonic acid, tends to dramatically decrease positional sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app