Add like
Add dislike
Add to saved papers

320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors.

Materials 2017 August 10
Flexible organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages such as light weight, low cost, flexibility, large-area fabrication, and compatibility with solution-processed techniques. However, compared with a rigid substrate, it still remains a challenge to obtain good device performance by directly depositing solution-processed organic semiconductors onto an ultrathin plastic substrate. In this work, ultrathin flexible OTFTs are successfully fabricated based on spin-coated 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) films. The resulting device thickness is only ~320 nm, so the device has the ability to adhere well to a three-dimension curved surface. The ultrathin C8-BTBT OTFTs exhibit a mobility as high as 4.36 cm² V(-1) s(-1) and an on/off current ratio of over 10⁶. These results indicate the substantial promise of our ultrathin flexible C8-BTBT OTFTs for next-generation flexible and conformal electronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app