Add like
Add dislike
Add to saved papers

A novel α V β 3 ligand-modified HPMA copolymers for anticancer drug delivery.

The integrin αV β3 receptor emerged as one of the most promising targets owing to its high expression on the surface of various malignant tumour cells and tumour angiogenesis endothelial cells, but with little expression in mature endothelial cells and the majority of normal cells. Here, we report a new targeting ligand FQSIYPpIK (FQS) with high affinity to integrin αV β3 receptor. To take the advantage of the particular interaction between FQS and integrin αV β3 receptor, FQS was linked to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers. A model drug doxorubicin (DOX) was simultaneously conjugated to the same HPMA copolymers via pH-sensitive hydrazone linkages (FQS-HPMA-DOX). In in vitro study, FQS-HPMA-DOX could be internalised into αV β3 receptor-overexpressed B16F10 cells via a highly specific ligand - receptor pathway (5.0 times and 4.5 times higher cellular internalisation than HPMA-DOX and a scrambled peptide (s)-FQS (sequence: SYFIPKQIp)-modified copolymers ((s)-FQS-HPMA-DOX)). It is worth noting that compared with the classical αV β3 ligand cRGDfK-modified HPMA copolymers (cRGDfK-HPMA-DOX), FQS-HPMA-DOX also showed superior targeting efficiency. In in vivo study in the B16F10 melanoma bearing mice model showed the antitumour efficiency of FQS-HPMA-DOX (83.9%) were significantly higher than HPMA-DOX (44.9%) and cRGDfK-HPMA-DOX (77.5%). These results suggest that FQS peptide can act as an effective targeting ligand for the delivery of therapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app