Journal Article
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intrinsic functional connectivity variance and state-specific under-connectivity in autism.

Human Brain Mapping 2017 November
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered brain connectivity. Previous neuroimaging research demonstrates inconsistent results, particularly in studies of functional connectivity in ASD. Typically, these inconsistent findings are results of studies using static measures of resting-state functional connectivity. Recent work has demonstrated that functional brain connections are dynamic, suggesting that static connectivity metrics fail to capture nuanced time-varying properties of functional connections in the brain. Here we used a dynamic functional connectivity approach to examine the differences in the strength and variance of dynamic functional connections between individuals with ASD and healthy controls (HCs). The variance of dynamic functional connections was defined as the respective standard deviations of the dynamic functional connectivity strength across time. We utilized a large multicenter dataset of 507 male subjects (209 with ASD and 298 HC, from 6 to 36 years old) from the Autism Brain Imaging Data Exchange (ABIDE) to identify six distinct whole-brain dynamic functional connectivity states. Analyses demonstrated greater variance of widespread long-range dynamic functional connections in ASD (P < 0.05, NBS method) and weaker dynamic functional connections in ASD (P < 0.05, NBS method) within specific whole-brain connectivity states. Hypervariant dynamic connections were also characterized by weaker connectivity strength in ASD compared with HC. Increased variance of dynamic functional connections was also related to ASD symptom severity (ADOS total score) (P < 0.05), and was most prominent in connections related to the medial superior frontal gyrus and temporal pole. These results demonstrate that greater intraindividual dynamic variance is a potential biomarker of ASD. Hum Brain Mapp 38:5740-5755, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app