Add like
Add dislike
Add to saved papers

Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish.

Analytical Chemistry 2017 September 6
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play a crucial role in many physiological processes. Cys production and metabolism is closely connected with Hcy and GSH; meanwhile, the dynamic antioxidant defenses network by Cys is independent of the GSH system, and Cys can serve as a more effective biomarker of oxidative stress. Hence, it is significant and urgent to develop an efficient method for specific detection of Cys over other biothiols (Hcy/GSH). However, most of the present Cys-specific fluorescent probes distinguished Cys from Hcy through response time, which would suffer from an unavoidable interference from Hcy in long-time detection. In this work, in order to improve the selectivity, we employed an improved aromatic substitution-rearrangement strategy to develop a ratiometric Cys-specific fluorescent probe (Cou-SBD-Cl) based on a new fluorescence resonance energy transfer (FRET) coumarin-sulfonyl benzoxadiazole (Cou-SBD) platform for discrimination of Hcy and GSH. Response of Cou-SBD-Cl to Cys would switch FRET on and generate a new yellow fluorescence emission with a 56.1-fold enhancement of ratio signal and a 99 nm emission shift. The desirable dual-color ratiometric imaging was achieved in living cells and normal zebrafish. In addition, probe Cou-SBD-Cl was also applied to real-time monitor Cys fluctuation in lipopolysaccharide-mediated oxidative stress in zebrafish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app