JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Gene network underlying the glial regenerative response to central nervous system injury.

Although the central nervous system does not regenerate, injury induces repair and regenerative responses in glial cells. In mammals, activated microglia clear up apoptotic cells and debris resulting from the injury, astrocytes form a scar that contains the lesion, and NG2-glia elicit a prominent regenerative response. NG2-glia regenerate themselves and differentiate into oligodendrocytes, which remyelinate axons leading to some recovery of locomotion. The regenerative response of glial cells is evolutionarily conserved across the animals and Drosophila genetics revealed an underlying gene network. This involves the genes Notch, kon-tiki, eiger, dorsal, and prospero, homologues of mammalian Notch1, ng2, TNF, NFκB, and prox1, respectively. Feedback loops between these genes enable a surge in proliferation in response to injury and ensuing differentiation. Negative feedback sets a timer for proliferation, and prevents uncontrolled growth that could lead to glioma. Remarkable parallels are found in these genetic relationships between fruit flies and mammals. Drosophila findings provide insights into gene functions that could be manipulated in stem cells and progenitors for therapeutic repair. Developmental Dynamics 247:85-93, 2018. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app