Add like
Add dislike
Add to saved papers

Apocynin protects mesangial cells from lipopolysaccharide-induced inflammation by exerting heme oxygenase 1-mediated monocyte chemoattractant protein-1 suppression.

Renal failure is observed in the pathological progression of sepsis and septic shock. Renal mesangial cells (RMCs) have been implicated in renal failure as a result of producing mediators, such as monocyte chemoattractant protein-1 (MCP-1) in response to lipopolysaccharide (LPS). Mitogen-activated protein kinases (MAPKs) have been demonstrated to mediate the LPS-induced inflammatory response in RMCs. Although previous studies indicated a promising effect of apocynin in various inflammatory conditions, its antiseptic efficacy in mesangial cells remains to be clearly determined. In the present study, the anti-inflammatory effects of apocynin and its underlying mechanism were examined in LPS-challenged RMCs. Apocynin significantly inhibited nitric oxide (NO) production in LPS-challenged RMCs and the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, the level of LPS-induced MCP-1 expression was significantly attenuated with apocynin. Furthermore, apocynin significantly suppressed the activation of MAPKs, such as extracellular signal-regulated kinases 1/2 and p38, but not c-Jun N-terminal kinases. Apocynin exhibited significantly increased expression of heme oxygenase-1 (HO-1) induction via nuclear factor (erythroid-derived 2)-like-2 (Nrf-2) phosphorylation. Inhibition of HO-1 with zinc protoporphyrin significantly abolished apocynin-induced suppression of MCP-1, indicating that HO-1 is significant in the suppression of MCP-1. Thus, apocynin exerts antiseptic activity via the suppression of pro-inflammatory signaling pathways and the activation of cytoprotective signaling pathways, such as HO-1/Nrf-2 in RMCs, indicating that apocynin may present as a promising candidate for in vivo evaluation of a therapeutic agent for inflammation-associated renal disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app