Add like
Add dislike
Add to saved papers

Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner.

Science Signaling 2017 August 9
Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma in mice while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled by species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with 35% of the stromal proteome altered by tumors consistently across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures, which included both known and previously unappreciated contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated; however, the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison made possible in these xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the microenvironmental niche of the tumor. Education of the stroma by the tumor is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, nonrandom, and defined tumor-promoting molecular alterations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app