Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Variation in single-nucleotide sensitivity of eCLIP derived from reverse transcription conditions.

Crosslinking and immunoprecipitation (CLIP) followed by high-throughput sequencing identifies the binding sites of RNA binding proteins on RNAs. The covalent RNA-amino acid adducts produced by UV irradiation can cause premature reverse transcription termination and deletions (referred to as crosslink-induced mutation sites (CIMS)), which may decrease overall cDNA yield but are exploited in state-of-the-art CLIP methods to identify these crosslink sites at single-nucleotide resolution. Here, we show the ratio of both crosslinked base deletions and read-through versus termination are highly dependent on the identity of the reverse transcriptase enzyme as well as on buffer conditions used. AffinityScript and TGIRT showed a lack of deletion of the crosslinked base with other enzymes showing variable rates, indicating that utilization and interpretation of CIMS analysis requires knowledge of the reverse transcriptase enzyme used. Commonly used enzymes, including Superscript III and AffinityScript, show high termination rates in standard magnesium buffer conditions, but show a single base difference in the position of termination for TARDBP motifs. In contrast, manganese-containing buffer promoted read-through at the adduct site. These results validate the use of standard enzymes and also propose alternative enzyme and buffer choices for particularly challenging samples that contain extensive RNA adducts or other modifications that inhibit standard reverse transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app