JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study.

Enormous efforts have been endeavored to develop inhibitors against the potential therapeutic target, mycobacterium tuberculosis 3-dehydroquinate dehydratase (MtbDHQase) to combat resistance. Over a dozen of small molecules have been crystallized to characterize the structural basis of the inhibition. However, the studies accomplished so far, have not incorporated all the essential interactions of these complexes simultaneously, to identify the novel inhibitors. Therefore, an attempt was made to construct the pharmacophore models and identify the essential features that can be employed to prioritize the molecules against this target. Based on validation and expertise, we have identified such complimentary features from the natural compounds that can be used as initial hits. Subsequently, these hits were tested for their inhibitory roles in reducing the mycobacterium tuberculosis (Mtb) culture growth. Moreover, the docking simulations were performed to seek the possible interactions accountable for the activity of these candidates against MtbDHQase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app