Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Imidazo[1,2-α]pyridines possess adenosine A 1 receptor affinity for the potential treatment of cognition in neurological disorders.

Previous research has shown that bicyclic 6:5-fused heteroaromatic compounds with two N-atoms have variable degrees of adenosine A1 receptor antagonistic activity. Prompted by this imidazo[1,2-α]pyridine analogues were synthesized and evaluated for their adenosine A1 and A2A receptor affinity via radioligand binding studies and subjected to a GTP shift assay to determine its adenosine A1 receptor agonistic or antagonistic functionality. Imidazo[1,2-α]pyridine, the parent scaffold, was found devoid of affinity for the adenosine A1 and A2A receptors. The influence of substitution on position C2 showed no improvement for either adenosine A1 or A2A receptor affinity. The addition of an amino or a cyclohexylamino group to position C3 also showed no improvement of adenosine A1 or A2A receptor affinity. Surprisingly para-substitution on the phenyl ring at position C2 in combination with a cyclohexylamino group at position C3 led to adenosine A1 receptor affinity in the low micromolar range with compound 4d showing: (1) the highest affinity for the adenosine A1 receptor with a Ki value of 2.06µM and (2) adenosine A1 receptor antagonistic properties. This pilot study concludes that para-substituted 3-cyclohexylamino-2-phenyl-imidazo[1,2-α]pyridine analogues represent an interesting scaffold to investigate further structure-activity relationships in the design of novel imidazo[1,2-α]pyridine-based adenosine A1 receptor antagonists for the treatment of neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app