Journal Article
Review
Add like
Add dislike
Add to saved papers

Insights Into the Neuroinflammatory Responses After Neonatal Hypoxia-Ischemia.

Neonatal hypoxia-ischemia (HI) is one of the major causes of death and/or lifelong neurobehavioral and cognitive dysfunction. Undoubtedly, brain damage following HI insult is a complex process with multiple contributing mechanisms and pathways resulting in both early and delayed injury. It is increasingly recognized that one of the leading pathogenic factors of neonatal brain damage is inflammation, induced by activation of the central and peripheral immune system. Immune responses are induced within minutes and can expand for weeks and even months after the insult. Both activated intrinsic (glia) and infiltrating cells (mast cells, monocytes/macrophages) produce soluble inflammatory molecules such as cytokines, chemokines, reactive oxygen, and nitrogen species, which are thought to be pivotal mediators of persistent neuronal injury. This manuscript provides a brief summary of the current knowledge concerning the specific contribution of different cell types and soluble factors to injury of the developing brain caused by neonatal HI. Finally, we discuss the potential forthcoming treatments aimed at targeting inflammation and then attenuation of damaging effects caused by neonatal HI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app