Add like
Add dislike
Add to saved papers

A new fluorene-based Schiff-base as fluorescent chemosensor for selective detection of Cr 3+ and Al 3 .

2-((9H-fluoren-2-ylimino) methyl)phenol (F3) was synthesized by condensation reaction of 9H-fluoren-2-amine and 2-hydroxybenzaldehyde in EtOH and characterized by its melting point,1 H-,13 C NMR and molecular mass. F3 exhibits a high selectivity for detection of Cr3+ and Al3+ ions as a fluorescent chemosensor and showed a single emission band at 536nm upon excitation at 333nm according to fluorescence emission studies. The addition of Cr3+ and Al3+ make a significant increase in fluorescent intensity at 536nm in CH3 CN, while other metal ions have almost no influence on the fluorescence. The fluorescence enhancement was attributed to the inhibited CN isomerization and the obstructed excited state intra-molecular proton transfer (ESIPT) of compound F3. Job's plot and DFT calculations data showed that the binding stoichiometries of F3 with Cr3+ and Al3+ are 2:1. The association constants (Ka ) for Cr3+ and Al3+ were calculated and found to be 8.33×104 M-1 and 5.44×104 M-1 , respectively. The detection limits were also calculated for Cr3+ and Al3+ and found to be 2.5×10-7 mol/L and 3.1×10-7 mol/L, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app