Add like
Add dislike
Add to saved papers

Respiratory muscle training decreases diaphragm DNA damage in rats with heart failure.

Respiratory muscle training (RMT) promotes beneficial effects on respiratory mechanics, heart and lung morphological changes, and hemodynamic variables in rats with heart failure (HF). However, the relation between RMT effects and diaphragm oxidative stress remains unclear. Therefore, the aim of this study was to evaluate the RMT effects on diaphragm DNA damage in HF rats. Wistar rats were allocated into 4 groups: sedentary sham (Sed-Sham, n = 8), trained sham (RMT-Sham, n = 8), sedentary HF (Sed-HF, n = 8), and trained HF (RMT-HF, n = 8). The animals underwent a RMT protocol (30 min/day, 5 days/week for 6 weeks), whereas sedentary animals did not exercise. Groups were compared by a two-way ANOVA and Tukey's post hoc tests. In rats with HF, RMT promoted reduction in pulmonary congestion (p < 0.0001) and left ventricular end diastolic pressure (p < 0.0001). Moreover, RMT produced a decrease in the diaphragm DNA damage in HF rats. This was demonstrated through the reduction in the percentage of tail DNA (p < 0.0001), tail moment (p < 0.01), and Olive tail moment (p < 0.001). These findings showed that a 6-week RMT protocol in rats with HF promoted an improvement in hemodynamic function and reduces diaphragm DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app