Add like
Add dislike
Add to saved papers

Validation of an Inertial Sensor System for Physical Therapists to Quantify Movement Coordination During Functional Tasks.

Physical therapists evaluate patients' movement patterns during functional tasks; yet, their ability to interpret these observations consistently and accurately is unclear. Physical therapists would benefit from a clinic-friendly method for accurately quantifying movement patterns during functional tasks. Inertial sensors, which are inexpensive, portable sensors capable of monitoring multiple body segments simultaneously, are a relatively new rehabilitation technology. We sought to validate an inertial sensor system by comparing lower limb and lumbar spine kinematic data collected simultaneously with a commercial inertial sensor system and a motion camera system while 10 subjects performed functional tasks. Mean and peak segment angular displacement data were calculated and compared between systems. Mean angular displacement root mean square error between the systems across all tasks and segments was <5°. Mean differences in peak displacements were generally acceptable (<5°) for the femur, tibia, and pelvis segments for all tasks; however, the inertial system overestimated lumbar flexion compared to the motion camera system. These data suggest that the inertial system is capable of measuring angular displacements within 5° of a system widely accepted for its accuracy. Standardization of sensor placement, better attachment methods, and improvement of inertial sensor algorithms will further increase the accuracy of the system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app