Add like
Add dislike
Add to saved papers

Quantile causal mediation analysis allowing longitudinal data.

Statistics in Medicine 2017 November 21
Mediation analysis has mostly been conducted with mean regression models. With this approach modeling means, formulae for direct and indirect effects are based on changes in means, which may not capture effects that occur in units at the tails of mediator and outcome distributions. Individuals with extreme values of medical endpoints are often more susceptible to disease and can be missed if one investigates mean changes only. We derive the controlled direct and indirect effects of an exposure along percentiles of the mediator and outcome using quantile regression models and a causal framework. The quantile regression models can accommodate an exposure-mediator interaction and random intercepts to allow for longitudinal mediator and outcome. Because DNA methylation acts as a complex "switch" to control gene expression and fibrinogen is a cardiovascular factor, individuals with extreme levels of these markers may be more susceptible to air pollution. We therefore apply this methodology to environmental data to estimate the effect of air pollution, as measured by particle number, on fibrinogen levels through a change in interferon-gamma (IFN-γ) methylation. We estimate the controlled direct effect of air pollution on the qth percentile of fibrinogen and its indirect effect through a change in the pth percentile of IFN-γ methylation. We found evidence of a direct effect of particle number on the upper tail of the fibrinogen distribution. We observed a suggestive indirect effect of particle number on the upper tail of the fibrinogen distribution through a change in the lower percentiles of the IFN-γ methylation distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app