Add like
Add dislike
Add to saved papers

GlycoDeNovo - an Efficient Algorithm for Accurate de novo Glycan Topology Reconstruction from Tandem Mass Spectra.

A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks. It then reconstructs the topologies of peaks that contribute to interpreting the precursor ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to effectively rank candidate topologies. IonClassifier is automatically learned from experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandem mass spectra. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app