Add like
Add dislike
Add to saved papers

The search for new powerful energetic transition metal complexes based on 3,3'-dinitro-5,5'-bis-1,2,4-triazole-1,1'-diolate anion: a DFT study.

In this study, employing a new high oxygen balance energetic 3,3'-dinitro-5,5'-bis-1,2,4-triazole-1,1'-diolate anion (DNBTDO) as the bidentate ligand, NH3 and NH2 NO2 as short energetic ligands, and Cu/Ni as the metal atoms, two series of novel energetic metal complexes were computationally designed. Their structures and properties were studied by density functional theory, electrostatic potential data, and molecular mechanics methods. The results showed that the designed metal complexes have high detonation performance and acceptable sensitivity: Cu/Ni(DNBTDO)(NH2 NO2 )2 (A3/B3) have better detonation properties and lower sensitivity than the most powerful CHNO explosive hexanitrohexaazaisowurtzitane, Cu/Ni(DNBTDO)(NH3 )(NH2 NO2 ) (A2/B2) have comparable energetic performance and sensitivity with 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, Ni(DNBTDO)(NH3 )2 (B1) has comparative energy level and sensitivity with 1,3,5-trinitro-1,3,5-triazinane. These five energetic metal complexes may be attractive to energetic materials researchers. Besides, both the energetic ligands and metal atoms could have a great influence on the structures, heats of formation, detonation properties, and stability of energetic metal complexes, and the effects are coupled with each other. This study may be helpful in the search for and development of new improved energetic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app