Add like
Add dislike
Add to saved papers

Improved Oral Bioavailability, Therapeutic Efficacy, and Reduced Toxicity of Tamoxifen-Loaded Liquid Crystalline Nanoparticles.

AAPS PharmSciTech 2018 January
Present investigation deals with formulation and evaluation of tamoxifen (TMX)-loaded liquid crystalline nanoparticles (TMX-LCNPs) for improving oral bioavailability and safety of the existing treatment. Hexagonal Glyceryl monooleate-based TMX-LCNPs (GLCNPs) and Phytantriol-based TMX-LCNPs (PLCNPs) were prepared by dilution-through-hydrotrope method for oral administration. Oleic acid was incorporated in the lipid matrix to enhance the drug loading in the LCNPs. Optimized LCNPs displayed small particle size with a narrow distribution, sustained drug release and high gastrointestinal stability. TMX-LCNPs were found to be considerably higher cytotoxic to MCF-7 cells as compared to free TMX. Substantial fold enhancement in oral bioavailability (~7- and ~5-folds with TMX-GLCNPs and TMX-PLCNPs, respectively) was evident followed by significant reduction in tumor burden with lesser hepatotoxicity. Out of the two LCNP formulations, PLCNPs were found to be better in convalescing the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app