Add like
Add dislike
Add to saved papers

Season-Long Experimental Drought Alters Fungal Community Composition but Not Diversity in a Grassland Soil.

Microbial Ecology 2018 Februrary
Using terrestrial model ecosystems (TMEs), we investigated how reduced moisture conditions impact soil fungal communities from a temperate grassland over the course of an entire season. Starting at about 65% of the soil's maximum water holding capacity (WHCmax ), TME soils were adjusted to three moisture levels for 15 weeks: 70% WHCmax , approximating starting conditions, 50% WHCmax , and 30% WHCmax , representing reduced moisture conditions. Diversity and abundances of soil fungi at the start and at the end of the experiment were characterized using Illumina meta-barcoding. Community diversity at the end of the experiment did not differ between experimental moisture levels and was comparable to diversity measures from the field. However, fungal communities did change compositionally in both abundances and presence/absence of species. Analyzing class-level and individual contributions of fungi to these changes revealed that only a minor portion reacted significantly, indicating that most compositional change was likely driven by many consistent small-scale shifts in presence/absences or abundances. Together, our results show that prolonged reduction in soil moisture conditions will trigger compositional changes in soil fungal communities but not necessarily change overall diversity. We highlight the cumulative contribution of minor but consistent changes among community members, as opposed to significant responses of individual species. We also detected a strong general experimental effect on soil fungi that are moved from the field to experimental TMEs, suggesting the importance of acclimatization effects in these communities under laboratory conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app