Add like
Add dislike
Add to saved papers

Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cells possibly via regulating NRF2.

PeerJ 2017
Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and mechanisms of laminarin in pulmonary oxidative damage are poorly understood. This study aimed at investigating the protective effect of laminarin against pulmonary oxidative damage and underlying mechanisms. Human lung fibroblasts MRC-5 cells were treated with hydrogen peroxide to induce oxidative damage. Laminarin treatment was performed before or after hydrogen peroxide treatment, and then major indexes of oxidative damage, including superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT), were quantified by biochemical assays. The expression of oxidation-related factor, nuclear factor erythroid 2 like 2 (NRF2) was analyzed by qPCR, Western blot and immunofluorescence assay. NRF2 knockdown and overexpression were performed by cell transfection to reveal possible mechanisms. Results showed that laminarin treatment of 0.020 mg/mL for 24 h, especially the pre-treatment, could significantly relieve changes in SOD, MDA, GSH and CAT that were altered by hydrogen peroxide, and promote NRF2 mRNA ( P  < 0.001). NRF2 protein was also elevated by laminarin, and nuclear translocation was observed. Factors in NRF2 signaling pathways, including KEAP1, NQO1, GCLC and HO1, were all regulated by laminarin. Roles of NRF2 were tested, suggesting that NRF2 regulated the concentration of SOD, MDA, GSH and CAT, suppressed KEAP1, and promoted NQO1, GCLC and HO1. These findings suggested the protective role of laminarin against pulmonary oxidative damage, which might involve the regulation of NRF2 signaling pathways. This study provided information for the clinical application of laminarin to pulmonary diseases like pulmonary fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app