Add like
Add dislike
Add to saved papers

Discovery of Novel Pyrazolopyrimidinone Derivatives as Phosphodiesterase 9A Inhibitors Capable of Inhibiting Butyrylcholinesterase for Treatment of Alzheimer's Disease.

ACS Chemical Neuroscience 2017 November 16
Discovery of multitarget-directed ligands (MTDLs), targeting different factors simultaneously to control the complicated pathogenesis of Alzheimer's disease (AD), has become an important research area in recent years. Both phosphodiesterase 9A (PDE9A) and butyrylcholinesterase (BuChE) inhibitors could participate in different processes of AD to attenuate neuronal injuries and improve cognitive impairments. However, research on MTDLs combining the inhibition of PDE9A and BuChE simultaneously has not been reported yet. In this study, a series of novel pyrazolopyrimidinone-rivastigmine hybrids were designed, synthesized, and evaluated in vitro. Most compounds exhibited remarkable inhibitory activities against both PDE9A and BuChE. Compounds 6c and 6f showed the best IC50 values against PDE9A (6c, 14 nM; 6f, 17 nM) together with the considerable inhibition against BuChE (IC50 , 6c, 3.3 μM; 6f, 0.97 μM). Their inhibitory potencies against BuChE were even higher than the anti-AD drug rivastigmine. It is worthy mentioning that both showed moderate selectivity for BuChE over acetylcholinesterase (AChE). Molecular docking studies revealed their binding patterns and explained the influence of configuration and substitutions on the inhibition of PDE9A and BuChE. Furthermore, compounds 6c and 6f exhibited negligible toxicity, which made them suitable for the further study of AD in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app