Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fast Kronecker Product Kernel Methods via Generalized Vec Trick.

Kronecker product kernel provides the standard approach in the kernel methods' literature for learning from graph data, where edges are labeled and both start and end vertices have their own feature representations. The methods allow generalization to such new edges, whose start and end vertices do not appear in the training data, a setting known as zero-shot or zero-data learning. Such a setting occurs in numerous applications, including drug-target interaction prediction, collaborative filtering, and information retrieval. Efficient training algorithms based on the so-called vec trick that makes use of the special structure of the Kronecker product are known for the case where the training data are a complete bipartite graph. In this paper, we generalize these results to noncomplete training graphs. This allows us to derive a general framework for training Kronecker product kernel methods, as specific examples we implement Kronecker ridge regression and support vector machine algorithms. Experimental results demonstrate that the proposed approach leads to accurate models, while allowing order of magnitude improvements in training and prediction time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app