Add like
Add dislike
Add to saved papers

Phase Transition, Dielectrics, Single-Ion Conductance, and Thermochromic Luminescence of a Inorganic-Organic Hybrid of [Triethylpropylammonium][PbI 3 ].

Inorganic Chemistry 2017 August 22
In this study, we used the facile solvent evaporation method to achieve the inorganic-organic hybrid crystals of [triethylpropylammonium][PbI3 ], which have been characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and differential scanning calorimetry as well as single-crystal X-ray structure analysis. The hybrid solid crystallizes in the monoclinic space group P21 /c at room temperature and is composed of one-dimensional [PbI3 ]∞ chains, where the neighboring PbI6 coordination octahedra connect together via the face-sharing mode and the organic cations fall in the spaces between [PbI3 ]∞ chains. The hybrid exhibits a dielectric phase transition with a critical temperature of ca. 432 K, dielectric relaxation at frequencies below 107 Hz, and single-ion conducting behavior, the conductivity of which increases rapidly from 9.43 × 10-10 S cm-1 at 383 K to 4.47 × 10-5 S cm-1 at 473 K. The variable-temperature single-crystal and powder X-ray diffraction analyses revealed that the dielectric phase transition is related to the disorder-to-order transformation of cations in the lattice. The electric modulus and impedance spectral analyses further disclosed that the dielectric relaxation arises from the ionic displacement polarization and molecular dipole orientation of cations. The single-ion conductance is due to the migration of cations that fall in the spaces of rigid inorganic [PbI3 ]∞ chains. The phase transition gives rise to this hybrid showing switchable ion-conducting nature around the critical temperature of the phase transition. Besides the fascinating functionalities mentioned above, the hybrid also exhibits a thermochromic luminescence feature originating from the electron transition between the valence and conduction bands of the inorganic [PbI3 ]∞ chain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app