Add like
Add dislike
Add to saved papers

Loss of AMPK activation promotes the invasion and metastasis of pancreatic cancer through an HSF1-dependent pathway.

Molecular Oncology 2017 October
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a mortality rate that closely parallels its incidence rate, and a better understanding of the molecular and cellular mechanisms associated with the invasion and distant metastasis is required. Heat shock factor 1 (HSF1) is a very highly conserved factor in eukaryotes that regulates the protective heat shock response. Here, we show that HSF1 is abnormally activated in pancreatic cancer. The knockdown of HSF1 impaired the invasion and migration and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells in vitro; however, the upregulation of HSF1 showed the opposite effects. In vivo, the pharmacological inhibition of HSF1 significantly reduced the tumor burden, decreased the incidence of invasion, and prolonged the overall survival of transgenic mice harboring the spontaneous pancreatic cancer. We suggest that the loss of AMP-activated protein kinase (AMPK) activation mediates the abnormal activation of HSF1 based on the findings that phospho-HSF1 (p-HSF1) was highly expressed in human PDAC tissues with a low expression of p-AMPK and that in those tissues with a high p-AMPK expression, the level of p-HSF1 was decreased. The in vivo and in vitro activation of AMPK impaired the activity of HSF1, and HSF1 mediated the effects of the AMPK knockdown-induced pancreatic cancer invasion and migration. Our study revealed a novel mechanism by which the loss of AMPK activation amplifies the activity of HSF1 to promote the invasion and metastasis of pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app