Add like
Add dislike
Add to saved papers

Ultraviolet-Visible Chiroptical Activity of Aluminum Nanostructures.

Small 2017 August 8
Ultraviolet (UV)-resonant metals (e.g., aluminum) typically have low melting point to cause a fabrication difficulty in helical sculpture to generate plasmons with chiroptical activity in the UV region. In this work, using glancing angle deposition (GLAD), two new methods are devised to generate crystalline chiral Al nanostructures that have stable chiroptical response in the UV-visible region originating from intrinsic helical structures. One approach involves fast substrate rotation during GLAD to fabricate Al nanoparticles (AlNPs) with hidden helicity; another is to deposit an achiral Al thin film on a host of plasmonic chiral NPs, such that the helical structures are duplicated from the chiral host to the achiral guest of Al nanocappings. The host@guest helicity duplication is a new GLAD methodology to generate chiroptically active plasmons, which can be generally adapted to diverse plasmonic metals for tailoring plasmonic chiroptical activity flexibly in the UV-visible region. More importantly, this work offers those two new methods to generate UV-active plasmonic chiral substrates, which can markedly enhance chiroptical activity of biomolecules. It would open a door to develop surface-enhanced chiroptical spectroscopies for sensitively monitoring stereobiochemical information, which is of prominent interest in understanding a wide range of homochirality-determined biological phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app