Add like
Add dislike
Add to saved papers

Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria.

The genetic code is not frozen but still evolving, which can result in the acquisition of 'dialectal' codons that deviate from the universal genetic code. RNA modifications in the anticodon region of tRNAs play a critical role in establishing such non-universal genetic codes. In echinoderm mitochondria, the AAA codon specifies asparagine instead of lysine. By analyzing mitochondrial (mt-) tRNA(Lys) isolated from the sea urchin (Mesocentrotus nudus), we discovered a novel modified nucleoside, hydroxy-N(6)-threonylcarbamoyladenosine (ht(6)A), 3' adjacent to the anticodon (position 37). Biochemical analysis revealed that ht(6)A37 has the ability to prevent mt-tRNA(Lys) from misreading AAA as lysine, thereby indicating that hydroxylation of N(6)-threonylcarbamoyladenosine (t(6)A) contributes to the establishment of the non-universal genetic code in echinoderm mitochondria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app