Add like
Add dislike
Add to saved papers

A Study on AIN Film-Based SAW Attenuation in Liquids and Their Potential as Liquid Ethanol Sensors.

Sensors 2017 August 8
In this paper, we report attenuation characteristics of aluminum nitride (AIN) film-based surface acoustic waves (SAWs) in liquids and their potential as liquid ethanol sensors. An AIN film-based SAW resonator was fabricated for liquid sensing application. The fabricated SAW device had a Rayleigh wave mode at a resonant frequency of 147.1 MHz and a low temperature coefficient of frequency (TCF) of -21.7 ppm/K. The signal attenuation in the transmission line of the SAW device was presented when ethanol (ETH) droplets and deionized water (DIW) with different concentrations and volume (0.2-1 µL) were dropped on the sensing area respectively. The attenuation of SAW as a function of time and liquid position was investigated. Residues left on the wave propagation path resulted in a frequency shift of the SAW device after liquid evaporation. For ETH, there was a 49 kHz frequency shift caused by a large amount of residues, while the frequency shift of DIW was not distinct, on account of a clean surface. The linear relationship between evaporation rate and ethanol concentration was demonstrated. The evaporation rate of ethanol droplets showed good consistency, and the evaporation time variation was less than 5% at each concentration level. Therefore, the proposed SAW device had great potentials to determine ethanol concentrations based on evaporation rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app